

OPTIMISATION

2^{ème} année Pré orientation MIC

R. Chelouah: rachid.chelouah@insa-toulouse.fr

OPTIMISATION

- Concepts de base: recherche opérationnelle
- Programmation linéaire
- Programmation en nombre entier
- Logiciels
 - ✓ Eclipse
 - **✓ LINDO**
 - ✓ Solveur Excel
 - **✓ OPL Sudio**

DÉFINITIONS

- Application de méthodes, techniques, instruments scientifiques pour modéliser et résoudre les problèmes dans tous les domaines
- Application de la méthode scientifique pour modeliser et résoudre les problèmes dans tous les domaines
- Art de donner des mauvaises réponses à des problèmes auxquels autrement de pires réponses seraient données

ORIGINES

- Développement durant la seconde guerre mondiale
 - applications aux opérations militaires
 - répartition des troupes, du matériel, des ressources
 - approvisionnement en vivres, en pièces, en armement
- Scientifiques et ingénieurs: applications civiles
 - programmation linéaire (1ère publication en 1939)
 - développement du simplexe par G. Dantzig (1947)
 - développement des techniques classiques en programmation linéaire, non-linéaire, dynamique, théorie des files d'attente, etc.
 - ralentissement des recherches généré par le manque d'outils de calcul

APPLICATIONS

- Applications aux problèmes réels de grande envergure
 - arrivée des processeurs rapides
 - développement des bases de données
 - techniques d'optimisation appliquées à de nombreux domaines
- Domaines d'utilisation
 - militaire
 - transport
 - aéroport
 - route, trajet, livraison
 - horaire
 - contrôle des réseaux
 - infrastructures, distribution
 - etc.

MÉTHODES

- Techniques mathématiques
- Techniques statistiques
- Modèles de gestion des stocks
- Modèles d'affectation
- Modèles de programmation dynamique
- Modèles de files d'attente
- Modèles séquentiels
- Modèles de remplacement
- Modèles de compétition
- Techniques de simulation
- Méthodes heuristiques

MODÈLE

- Moyen pour mieux comprendre la réalité utilisée pour représenter les propriétés fondamentales d'un certain phénomène
- Problèmes de gestion souvent complexes
- Nécessité fréquente d'ignorer certains paramètres pour tirer une version idéale, épurée: c'est un modèle

Modèles mathématiques

- Modèles déterministes
 - Incertitude négligeable
 - Résultats du phénomène prévu avec certitude
- Modèles probabilistes ou stochastiques
 - Incertitude considérée comme facteur important du phénomène ou système analysé

Classe de modèles déterministiques

- Modèles de programmation linéaire
 - Équations ou inéquations du premier degré représentant les contraintes du problème
 - Fonction économique qui traduit l'objectif de l'entreprise

Formulation du modèle mathématique

- Définir le problème
 - Quelle est la nature exacte du problème?
 - Quel est l'objectif recherché?
 - Quelles sont les conditions d'opération?
 - Quels sont les paramètres à considérer? Quelle influence?
 - Quel est le degré de précision requis?

Optimisation

Introduction

En mathématiques, l'optimisation est l'étude des problèmes qui sont de la forme :

Étant donné : une fonction $f:A\mapsto \mathbb{R}$ d'un ensemble A aux nombre réels

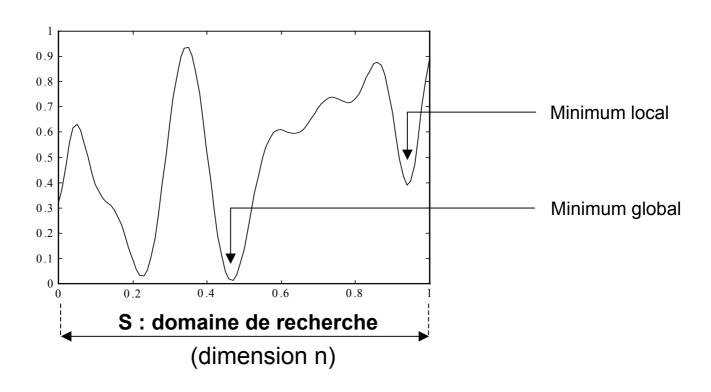
Recherché : un élément x_0 en A

tel que $f(x_0) \ge f(x)$ pour tous les x en A (« maximisation ») ou

tel que $f(x_0) \le f(x)$ pour tous les x en $A(\ll minimisation \gg)$.

Typiquement, A est un sous-ensemble donné de l'espace euclidien \mathbb{R}^n , souvent spécifié par un ensemble de contraintes, des égalités ou des inégalités que les membres de A doivent satisfaire. Les éléments de A sont appelées les solutions possibles et la fonction f est appelée la fonction objectif. Une solution possible qui maximise (ou minimise, si c'est le but) la fonction objectif est appelée une solution optimale. Dans le cas particulier où A est un sous-ensemble de \mathbb{N}^n u de $\mathbb{N}^p \times \mathbb{R}^q$, on parle d'optimisation combinatoire

Optimisation



- > Sur un ensemble "continu" de solutions S, on cherche à optimiser une fonction f, appelée " fonction objectif ".
- > On cherche le (ou un) minimum ou maximum global. Dans la suite, on recherche un minimum global.

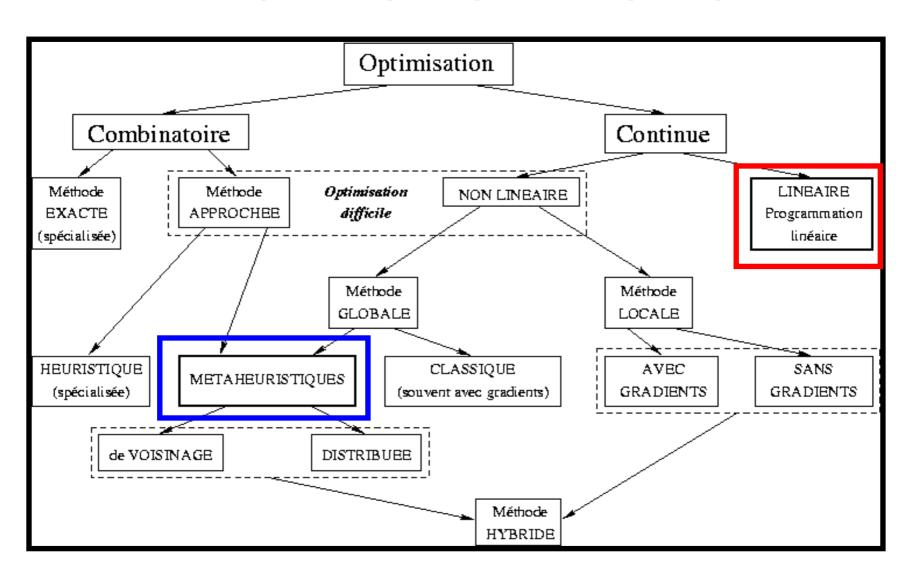
Optimisation combinatoire

- Multitude d'algorithmes d'optimisation combinatoire
 - Méthodes exactes
 - programmation dynamique
 - recherche arborescente
 - ...
 - Méthodes approchées heuristiques / métaheuristiques
 - recuit simulé et variantes
 - algorithmes évolutionnaires
 - Algorithme de recherche tabou
 - algorithmes de colonies de fourmis
 - algorithme pas essaim particulaire
 -

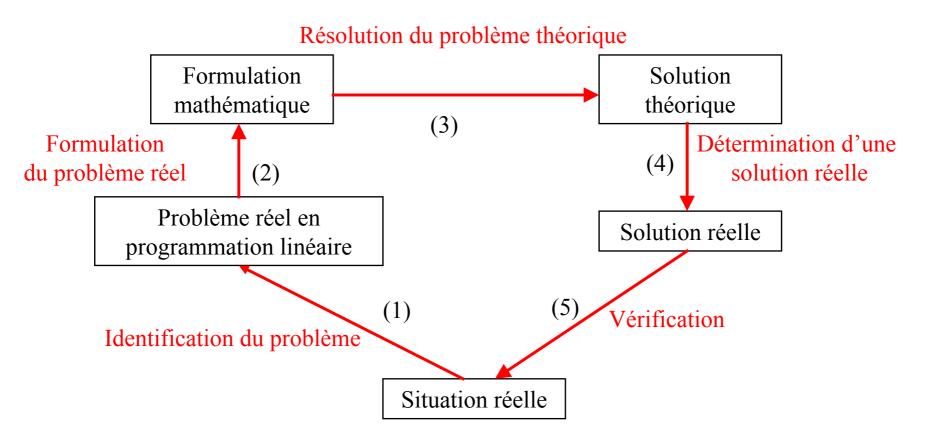
Optimisation continue

- Multitude d'algorithmes d'optimisation combinatoire
 - Méthodes exactes
 - Programmation linéaire en nombres réels (simplexe)
 - ...
 - Méthodes approchées heuristiques / métaheuristiques
 - recuit simulé et variantes
 - algorithmes évolutionnaires
 - Algorithme de recherche tabou
 - algorithmes de colonies de fourmis
 - algorithme pas essaim particulaire
 - ...

CLASSIFICATION DES ALGORITHMES D'OPTIMISATIONPTIMISATION



PRINCIPE DE LA PROGRAMMATION LINEAIRE



PROGRAMME LINÉAIRE

PL

- problème d'optimisation consistant à
- maximiser (ou minimiser) une fonction objectif linéaire
- de n variables de décision
- soumises à un ensemble de contraintes exprimées sous forme d'équations ou d'inéquations linéaires

Différentes programmations linéaires

- Programmation Linéaire classique
- Programmation Linéaire en Nombre Entiers
- Programmation Linéaire en 0-1
- Programmation Linéaire Mixte
- La terminologie est due à George B. Dantzig, inventeur de l'algorithme du simplexe (1947)

PROGRAMMATION LINÉAIRE

Hypothèses:

- La linéarité des contraintes et de la fonction objectif
- La proportionnalité des gains/coûts et des consommation de ressources
- La divisibilité des variables
- Le déterminisme des données
- Lors de la modélisation d'un problème réel, l'impact de ces hypothèses sur la validité du modèle mathématique doit être étudié
- Cette analyse peut mener à choisir un modèle différent (non linéaire, stochastique, ...) et est essentielle pour la phase d'interprétation des résultats fournis par le modèle

MISE EN FORME MATHÉMATIQUE

Définir les variables de décision

- ensemble des variables qui régissent la situation à modéliser
- variables réelles, entières, binaires

Préciser la fonction objectif

- fonction mathématique composée des variables de décision qui représente le modèle physique modélisé
- fonction linéaire, non-linéaire

Préciser les contraintes du problème

- ensemble des paramètres qui limitent le modèle réalisable
- équations ou inéquations composées des variables de décision

Préciser les paramètres du modèle

constantes associées aux contraintes et à la fonction objective

PROGRAMMATION LINÉAIRE

Validation du modèle et des résultats

- S'assurer
 - que le modèle développé est conforme à la réalité
 - que les résultats sont valides dans toutes les conditions

Conception du système d'application

- Possibilité d'utiliser des logiciels spécialisés
- Implantation

FORMULATION MATHÉMATIQUE D'UN PROGRAMME LINÉAIRE

FONCTION OBJECTIF

- Maximiser ou minimiser
- $Z = C_1X_1 + C_2X_2 + C_3X_3 + ... + + C_nX_n$

Contraintes

- $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1n}x_n (\leq, =, \geq) b_1$
- $a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + ... + a_{2n}X_n (\leq, =, \geq) b_2$
- $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + ... + a_{mn}x_n \ (\leq, =, \geq) b_m$

Contraintes de non-négativité

• $x_i \ge 0$; j = 1, 2, 3, ... n

avec

- variables de décision (inconnues)
- x_j variables de decision (inconnues)
 a_{ij}, b_i, c_j paramètres du programme linéaire

TERMINOLOGIE DE LA SOLUTION

Solution réalisable

 Solution où toutes les contraintes du modèle sont satisfaites

Zone de solution

Ensemble de toutes les solutions réalisables

Solution optimale

- Solution réalisable où la fonction objectif atteint la meilleure valeur, maximum ou minimum
- Plusieurs solutions optimales possibles

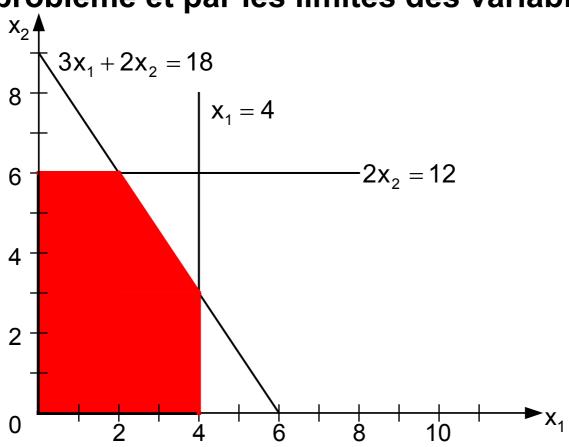
PROGRAMMATION LINÉAIRE

Résolution selon les techniques appropriées

- Exemple
 - MAXIMISER $z = 3x_1 + 5x_2$
 - SUJET À
 - $x_1 \leq 4$
 - $2x_2 \le 12$
 - $3x_1 + 2x_2 \le 18$
 - $x_1 \ge 0$; $x_2 \ge 0$
- Solutions optimales
 - programmation linéaire: simplexe
 - programmation en nombre entier: branch-and-bound
 - programmation dynamique
- Solutions sous-optimales: heuristiques

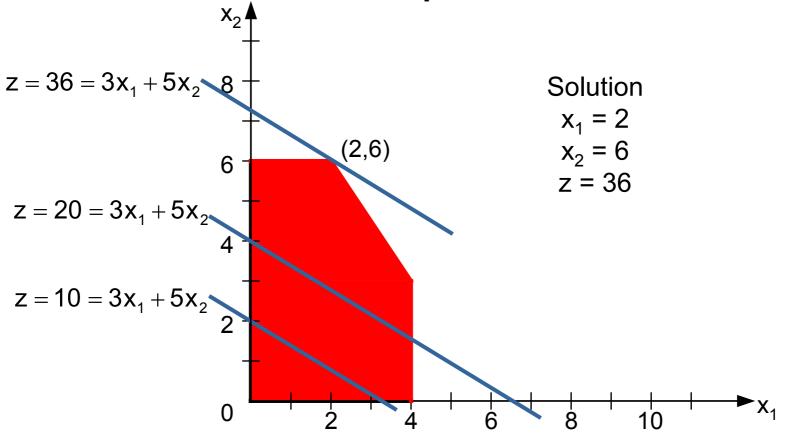
ZONE DE SOLUTION RÉALISABLE

Zone limitée par l'ensemble des équations de contraintes du problème et par les limites des variables de décision



FONCTION OBJECTIVE

Déplacement de la fonction objective à l'intérieur de la zone de solution réalisable pour atteindre un extremum



PROGRAMMATION LINÉAIRE

PHASES D'UNE ÉTUDE DE R.O.

- Formulation du problème
- Construction du modèle mathématique
 - Identification des variables associées au problème
 - Formulation des contraintes qui délimitent les valeurs que peuvent prendre les variables
 - Formulation de la mesure d'efficacité associée aux variables (fonction linéaire dite fonction objectif)
- Obtention d'une solution optimale à partir du modèle
- Vérification du modèle et de la solution
- Établissement de contrôles sur la solution
- Mise en œuvre de la solution

RÉSULTAT D'UNE OPTIMISATION LINÉAIRE

Le domaine admissible d'un PL peut être

- vide: dans un tel cas, le problème est sans solution admissible (pas de solution optimale)
- borné (et non vide): le problème possède toujours au moins une solution optimale
- non borné: dans ce cas, selon la fonction objectif
 - le problème peut posséder des solutions optimales
 - il peut exister des solutions admissibles de valeur arbitrairement grande (ou petite)
 - dans un tel cas, le PL n'admet pas de solution optimale finie et est dit non borné

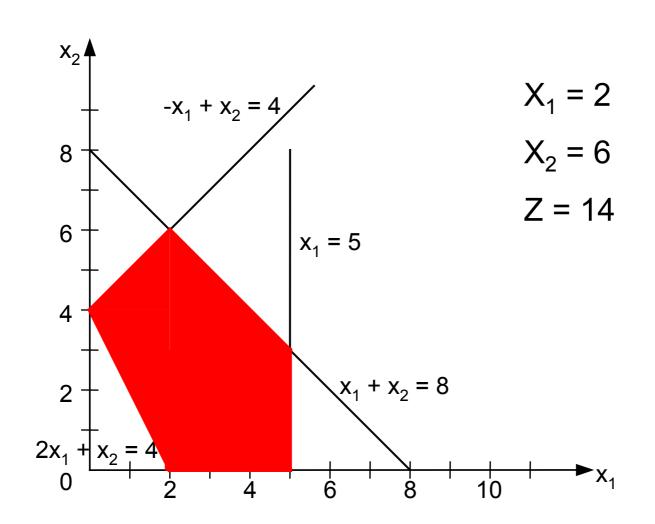
PROBLÈME DE MAXIMISATION

Maximiser

$$Z = x_1 + 2x_2$$

Sujet à
 $2x_1 + x_2 \ge 4$
 $x_1 + x_2 \le 8$
 $-x_1 + x_2 \le 4$
 $x_1 \le 5$
 $x_1 \ge 0, x_2 \ge 0$

PROBLÈME DE MAXIMISATION



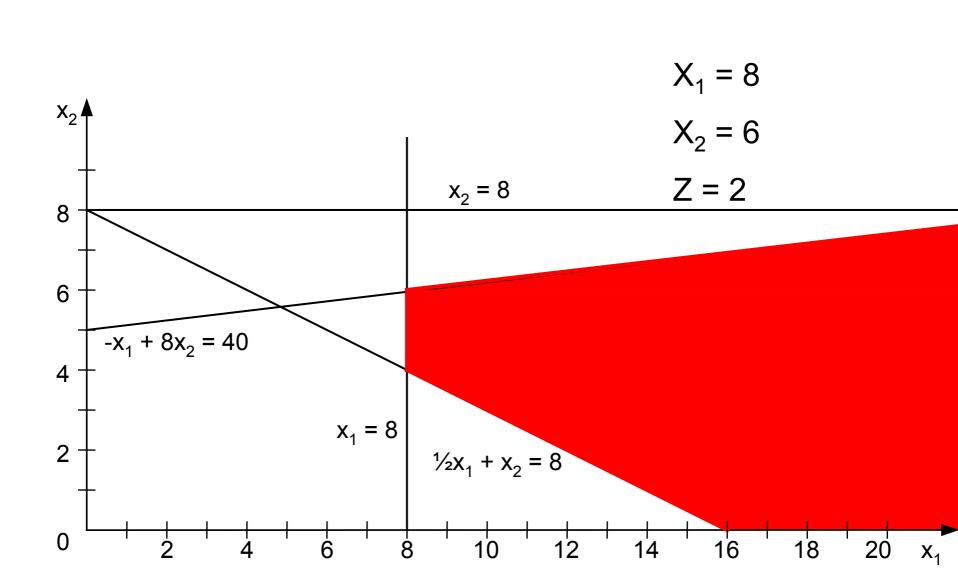
PROBLÈME DE MINIMISATION

Minimiser

$$Z = x_1 - x_2$$

Sujet à $\frac{1}{2}x_1 + x_2 \ge 8$
 $-x_1 + 8x_2 \le 40$
 $x_1 \ge 8$
 $x_2 \le 8$
 $x_1 \ge 0, x_2 \ge 0$

PROBLÈME DE MINIMISATION



MÉTHODE DU SIMPLEXE

INTRODUCTION

- développée initialement par George Dantzig en 1947
- seule méthode exacte pour solutionner des problèmes linéaires de grande taille
- méthode itérative algébrique où l'on circule séquentiellement sur les sommets à l'intérieur de la zone de solution jusqu'à l'obtention de la solution optimale

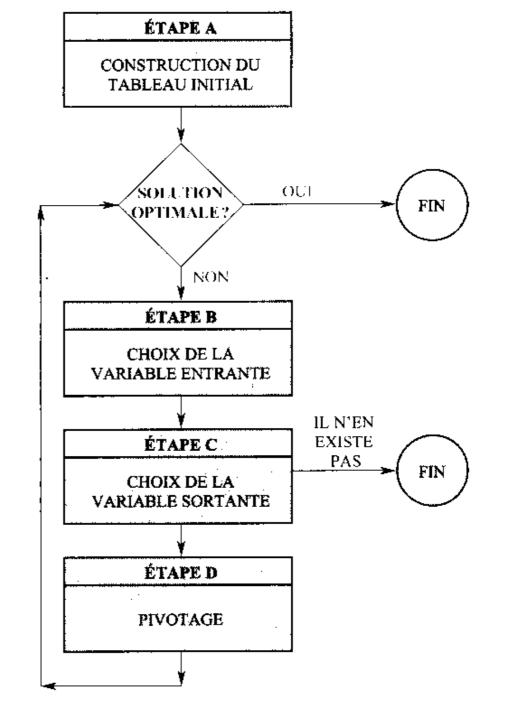
PROPRIÉTÉS DU SIMPLEXE

- Zone de solution du problème linéaire toujours convexe
 - une surface est convexe si elle est située toute entière du même coté d'un plan tangent
- S'il existe une seule solution optimale au problème linéaire, elle est obligatoirement localisée sur un sommet de la zone de solution
- S'il existe de multiples solutions optimales, au moins deux d'entre elles doivent être localisées sur des sommets adjacents
- Le nombre de sommets de la zone de solution est fini
- Si la solution réalisable localisée à un sommet donné n'a pas de voisin adjacent dont la solution est supérieure, ce sommet est la solution optimale

ALGORITHME DU SIMPLEXE

- 1. Déterminer une solution de base réalisable
- 2. Vérifier si la solution actuelle est optimale
- Déterminer la variable hors base qui va devenir variable de base
- 4. Déterminer la variable de base qui sortira de la solution
- Effectuer les opérations linéaires (pivots) selon la technique de Gauss-Jordan

ALGORITHME DU SIMPLEXE



MÉTHODE DU SIMPLEXE DÉFINITIONS

Systèmes d'équations équivalents

Systèmes qui possèdent le même ensemble de solutions

Variable de base

 Variable qui a un coefficient unitaire positif dans une des équations du système et un coefficient nul partout ailleurs

Opérations pivot

 Opération de Gauss-Jordan pour transformer un système d'équations équivalent dans lequel une variable devient de base

Système canonique

Système d'équations où il y a une variable de base par équation

Solution de base

 Système d'équations où les variables hors base sont fixées à zéro résolu pour les variables de base

FORME CANONIQUE

■ PROBLÈME DE MAXIMISATION

Max
$$\sum_{j=1}^{n} c_j x_j$$
 sujet à
$$\sum_{j=1}^{n} a_{ij} \quad x_j \leq b_i \quad i = 1, ..., m$$

$$x_j \geq 0 \quad j = 1, ..., n$$

PROBLÈME DE MINIMISATION

Min
$$\sum_{j=1}^{n} c_j x_j$$

sujet à
$$\sum_{j=1}^{n} a_{ij} \quad x_j \geq b_i \quad i = 1, ..., m$$

$$x_j \geq 0 \quad j = 1, ..., n$$

FORME NORMALISÉE

PROBLÈME DE MAXIMISATION

Max
$$\sum_{j=1}^{n} c_j x_j$$

sujet à
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad i = 1, ..., m$$

$$x_j \ge 0 \quad j = 1, ..., n$$

PROBLÈME DE MINIMISATION

Min
$$\sum_{j=1}^{n} c_j x_j$$

sujet à
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad i = 1, ..., m$$

$$x_j \ge 0 \quad j = 1, ..., n$$

FORME CANONIQUE

Max
$$Z = 3 x_1 + 5 x_2$$

```
sujet à x_1 \leq 4 2 x_2 \leq 12 3 x_1 + 2 x_2 \leq 18 et x_1 \geq 0, x_2 \geq 0
```


FORME NORMALISÉE

Max Z

$$\mathbf{Z} - \mathbf{3} \ \mathbf{x}_1 \ - \mathbf{5} \ \mathbf{x}_2 \ = \mathbf{0} \ (\mathbf{0})$$
 $x_1 \ + x_3 \ = 4 \ (1)$
 $2 \ x_2 \ + x_4 \ = 12 \ (2)$
 $3 \ x_1 \ + 2 \ x_2 \ + x_5 \ = 18 \ (3)$
avec
 $x_i \ge 0$, pour j = 1, 2, 3, 4, 5

ÉTAPE D'INITIALISATION

- Déterminer une solution de base réalisable
- Porter les variables hors base à zéro
- Solutionner les variables de base
- Exemple:
 - z, x₃, x₄ et x₅ sont les variables de base
 - x₁ et x₂ sont les variables hors base
- On obtient:
 - $x_1 = 0$ et $x_2 = 0$
 - $x_3 = 4$, $x_4 = 12$ et $x_5 = 18$
 - z = 0

VARIABLE ENTRANT DANS LA BASE

- Variable hors base entrant dans la base
- Celle qui sera choisie fera augmenter la valeur de la fonction objective le plus rapidement possible
- Variable ayant le plus grand coefficient négatif (cas de maximisation) de l'équation (0)
- Exemple:
 - X₂ devient variable de base

VARIABLE SORTANT DE LA BASE

- Variable qui limitera le plus rapidement la progression de la nouvelle variable de base
- Exemple
 - si x₂ entre dans la base
 - équation (2)
 - $2 x_2 + x_4 = 12$
 - $x_2 \max = 6$
 - équation (3)
 - $3 x_1 + 2 x_2 + x_5 = 18$
 - $x_2 \max = 9$
 - limite maximale de x₂ égale 6 sinon x₄ devient négatif

OPÉRATIONS PIVOT

Système d'équations original (variables de base en gras)

- Pour revenir à la forme canonique, il faut que les variables de base aient un coefficient unitaire dans une équation et nul dans les autres
- Équation (2) multipliée par ½

Il faut éliminer les termes x₂ des autres équations

OPÉRATIONS PIVOT (suite)

• Équation (0) = ancienne (0) + 5 équation (2)

$$Z - 3 x_1 - 5 x_2 = 0$$
 (0)
 $5 x_2 + 5/2 x_4 = 30$ (2)
 $Z - 3 x_1 + 5/2 x_4 = 30$ (0)

Équation (3) = ancienne (3) – 2 équation (2)

$$3 x_{1} + 2 x_{2} + x_{5} = 18$$
(3)

$$-2 x_{2} - x_{4} = -12$$
(2)

$$3 x_{1} - x_{4} + x_{5} = 6$$
(3)

OPÉRATIONS PIVOT (suite)

Nouveau système équivalent d'équations

Z
$$-3 x_1$$
 $-5/2 x_4 = 30$ (0)
 $x_1 + x_3 = 4$ (1)
 $x_2 + \frac{1}{2} x_4 = 6$ (2)
 $3 x_1 - x_4 + x_5 = 6$ (3)

CRITÈRE D'OPTIMALITÉ

- Optimalité assurée lorsqu'il est impossible de faire augmenter (cas de maximisation) la valeur de z
- Exemple:
 - x₁ peut faire augmenter z
 - Variable entrante x₁
 - Variable sortante x₅
 - équation (1)
 - $x_1 + x_3 = 4$
 - \cdot $x_1 max = 4$
 - équation (3)
 - $3 x_1 x_4 + x_5 = 6$
 - $\cdot x_1 \max = 2$

SOLUTION OPTIMALE

Système équivalent d'équations

Z
$$+ 3/2 x_4 + x_5 = 36$$
 (0)
 $x_3 + 1/3 x_4 - 1/3 x_5 = 2$ (1)
 $x_2 + \frac{1}{2} x_4 = 6$ (2)
 $x_1 - 1/3 x_4 + 1/3 x_5 = 2$ (3)

Variables hors base

•
$$x_4 = 0, x_5 = 0$$

Variables de base

$$x_1 = 2, x_2 = 6, x_3 = 2$$

Fonction objective

$$z = 36$$

Méthode essentiellement identique

- Informations
 - Coefficients des variables
 - Constantes des équations
 - Variables de base de chaque équation

	Forme algébrique						Forme tableau						
							Coe	fficient	S			Variables	
					Z	x_{l}	x_2	X_{β}	$X_{\mathcal{A}}$	x_5	bi	de base	
	x_j		$+ x_3$	= 4	0	1	0	1	0	0	4	x_3	
		$2 x_2$	$+ x_d$	= 12	0	0	2	0	1	0	12	<i>x</i> ₄	
	$3x_{I}$ -	$+2 x_2$	$+ x_5$	= 18	0	3	2	0	0	1	18	X5	
Z -	$3x_I$ -	5 x2		= 0	1	-3	-5	0	0	0	0	Z	

- Initialisation
- Critère d'optimalité
 - Coefficients de l'équation (0) non négatifs ?
- Itération # 1
 - Dans la dernière ligne, on a 2 coefficients négatifs. On prends le plus grands en valeur absolue c'est-à-dire –5, et on définit la variable entrante
 - Variable entrante x₂
 - Entourer la colonne pivot
 - Variable sortante x₄
 - Entourer la ligne pivot
 - Point pivot à l'intersection
 - Transformation de Gauss-Jordan

	Forme tableau								
		Coe	fficier	nts			Variables		
Z	X_{j}	x_2	$X_{\mathcal{J}}$	X_{d}	X5	bi	de base		
0	1	_0	1	0	0	4	$X_{\mathcal{J}}$		
0	0	(2)	0	1	0	12 → 12/2 = 6 minimum	X_d		
0	3	2	0	0	1	18 → 12/2 = 9	X5		
1	-3	-5	0	0	0	0	Z		

- Itération #1 (suite)
 - ✓ Diviser la ligne pivot par le nombre pivot
 - ✓ Appliquer les transformations
 - ✓ Nouvelle solution
 - z = 30
 - Solution (0, 6, 4, 0, 6)

	Forme tableau								
		Co		Variables					
Z	x_J	x_2	$X_{\mathcal{J}}$	$X_{\mathcal{A}}$	x_5	bi	de base		
0	1	0	1	0	0	4	x_{β}		
0	0	2	0	1	0	12	X_d		
0	3	2	0	0	1	18	x5		
1	-3	-5	0	0	0	0	Z		
0	1	0	1	0	0	4	x_{β}		
0	0	1	0	1/2	0	6	x2		
0	3	0	0	1	1	6	X5		
1	-3	0	0	5/2	0	30	Z		

Itération # 2

- Dans la dernière ligne, on trouve encore un coefficient négatif (-3)
- Cette colonne nous donne x_i comme variable entrante
- La variable x₅ est sortante
- Le pivot est 3

	Forme tableau								
		Co	efficier	nts			Variables		
Z	x_I	x_2	x_3	X_d	$X_{\mathcal{S}}$	bi	de base		
0	1	0	1	0	0	4 → 4/1 = 4	X_{β}		
0	ی	1	0	1/2	0	6	x2		
0	(3)	0	0	1	1	6 → 6/3 = 2 minimum	x5		
1	-3	0	0	5/2	0	30	Z		

Ensemble complet

	Forme tableau									
		Coe		Variables						
Z	x_I	x_2	x_3	χ_{4}	$X_{\mathcal{I}}$	bi	de base			
0	1	0	1	0	0	4	x_j			
0	0	2	O	1	0	12	x_d			
0	3	2	0	0	1	18	X5			
1	-3	-5	0	0	0	0	Z			
0	1	0	1	0	0	4	$X_{\mathcal{J}}$			
0	0	1	0	1/2	0	6	X2			
0	3	0	O	1	1	6	X5			
1	-3	0	0	5/2	0	30	Z			
0	0	0	1	1/3	-1/3	2	$X_{\mathcal{J}}$			
0	0	1	O	1/2	O	6	x_2			
0	1	0	O	-1/3	1/3	2	x_I			
1	0	0	0	3/2	1	36	Z			

Solution

- (2, 6, 2, 0, 0)
- z = 36

Forme canonique

$$\text{Max } Z = \mathbf{cx}$$

sujet à

 $Ax \leq b$

 $x \ge 0$

où

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix} \qquad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Forme normalisée

$$Max Z = \mathbf{cx}$$

sujet à

$$\left[\mathbf{A},\mathbf{I}\right]_{\mathbf{X}_{\mathbf{s}}}^{\mathbf{X}} = \mathbf{b}$$

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{x}_{\mathbf{s}} \end{bmatrix} \geq \mathbf{0}$$

où

 $I = matrice identitée m \times m$

$$\mathbf{x}_{s} = \begin{bmatrix} x_{n+1} \\ x_{n+2} \\ \dots \\ x_{n+m} \end{bmatrix}$$

Problème

$$\mathbf{c} = \begin{bmatrix} 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A}, \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \mathbf{x}_s = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\mathbf{x}_{s} = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Itération 0

$$\mathbf{X_B} = \begin{bmatrix} \mathbf{X_3} \\ \mathbf{X_4} \\ \mathbf{X_5} \end{bmatrix}$$

$$\mathbf{B} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\mathbf{x_B} = \begin{vmatrix} \mathbf{x_3} \\ \mathbf{x_4} \\ \mathbf{x_5} \end{vmatrix} \qquad \mathbf{B} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad \mathbf{B}^{-1} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

•
$$\mathbf{X_4}$$
 sort $\mathbf{X_B} = \begin{bmatrix} \mathbf{X_3} \\ \mathbf{X_4} \\ \mathbf{X_5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$

$$\mathbf{c_B} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = 0$$

Itération 1

$$\mathbf{X}_{\mathbf{B}} = \begin{bmatrix} \mathbf{X}_{3} \\ \mathbf{X}_{2} \\ \mathbf{X}_{5} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,5 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{x_B} = \begin{bmatrix} \mathbf{x}_3 \\ \mathbf{x}_2 \\ \mathbf{x}_5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

$$\mathbf{c_B} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{pmatrix} 4 \\ 6 \\ 6 \end{bmatrix} = 30$$

Itération 2

$$\mathbf{x}_{\mathbf{B}} = \begin{bmatrix} \mathbf{x}_{3} \\ \mathbf{x}_{2} \\ \mathbf{x}_{1} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix} \qquad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0,33 & -0,33 \\ 0 & 0,50 & 0 \\ 0 & -0,33 & 0,33 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{x}_{3} \end{bmatrix} \begin{bmatrix} 1 & 0,33 & -0,33 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$$

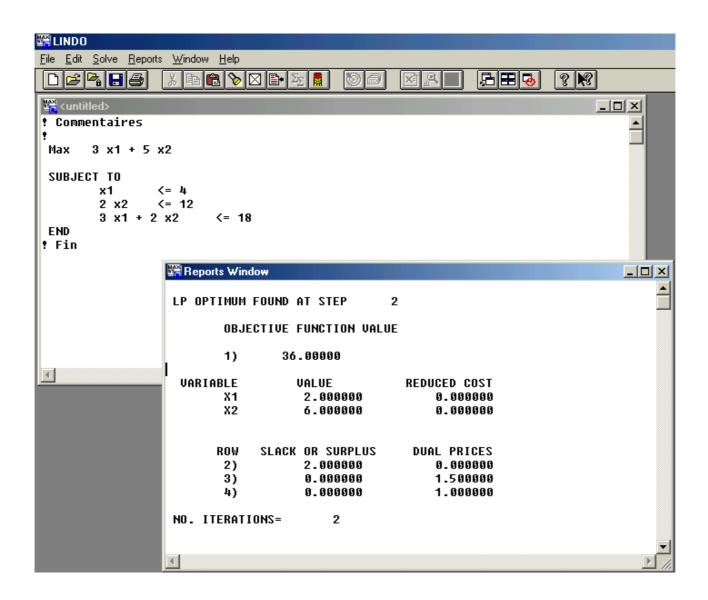
$$\mathbf{x_B} = \begin{bmatrix} \mathbf{x_3} \\ \mathbf{x_2} \\ \mathbf{x_1} \end{bmatrix} = \begin{bmatrix} 1 & 0.33 & -0.33 \\ 0 & 0.50 & 0 \\ 0 & -0.33 & 0.33 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}$$

$$\mathbf{c_B} = \begin{bmatrix} 0 & 5 & 3 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} = 36$$

RÉSOLUTION AVEC MICROSOFT EXCEL

	Α		В	С	D	Е
1	Résoluti	on d'u	n problème line	éaire		
2						
3			x1	x2		
4			0	0		
5	FO		3	5	0	
6						
7	contrair	ntes	1		0	4
8				2	0	12
9			3	2	0	18
10		Paramè	tres du solveur			?×
11				==1		
12		Égale à	cible à définir: \$D\$5			Résou <u>d</u> re
13			: ⊙Ma <u>x</u> O s varia <u>bl</u> es:———	Mi <u>n</u> <u>V</u> aleur:	ļo	Fermer
14		\$B\$4:			<u>Proposer</u>	
15					- Hobosei	
16		Contra			7	Options
17		\$D\$8	<= \$E\$7 <= \$E\$8		Ajouter	
18		\$D\$9	<= \$E\$9		<u>M</u> odifier	50.15
19					<u>Supprimer</u>	<u>R</u> établir
20					<u> </u>	<u>Ai</u> de
21						

RÉSOLUTION AVEC LINDO



SITUATIONS PARTICULIÈRES

- Égalité des profits relatifs
 - Choix aléatoire de la variable
- Égalité des ratios
 - Choix aléatoire
 - Situation de dégénérescence: remonter à l'étape des ratios identiques
- Solution non bornée
 - En pratique, une contrainte est absente
- Solutions multiples
 - Variables hors base avec des coefficients nuls dans la fonction objective

VARIABLES ARTIFICIELLES

- Cas ≥
 - $a_{i1} x_1 + a_{i2} x_2 + a_{i3} x_3 + ... + a_{in} x_n \ge b_i$
 - Ajout d'une variable d'écart
 - $a_{i1} x_1 + a_{i2} x_2 + a_{i3} x_3 + ... + a_{in} x_n x_m = b_i$
 - Coefficient de la variable d'écart négatif ne peut servir comme variable de base
 - Ajout d'une variable artificielle => PL auxiliaire
 - $a_{i1} x_1 + a_{i2} x_2 + a_{i3} x_3 + ... + a_{in} x_n x_m + \overline{x_a} = b_i$

VARIABLES ARTIFICIELLES

- Cas =
 - L'ajout d'une variable artificielle permet l'insertion d'une variable de base dans la solution de départ
 - Les variables artificielles sont éliminées de la solution en leur assignant une pénalité importante dans la fonction objective

RÉSOLUTION

- Méthode du grand M
- Méthode des deux phases
- SOLUTION OPTIMALE DU PL AUXILIAIRE EST SOLUTION DE BASE POUR LE PL INITIAL

DUALITÉ

PROBLÈME PRIMAL

PROBLÈME DUAL

$$Max Z = \sum_{j=1}^{n} c_j x_j$$

 $Min Y_0 = \sum_{i=1}^{m} b_i y_i$

sujet à

sujet à

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad i = 1, ..., m \qquad \sum_{i=1}^{m} a_{ij} y_{i} \geq c_{i} \quad j = 1, ..., n$$

$$\sum_{i=1}^{m} a_{ij} yi \geq cj \quad j = 1, ..., n$$

et

et

$$x_j \geq 0$$
 $j = 1,...,n$

$$y_i \geq 0$$
 $i = 1,...,m$

EXEMPLE DE DUALITÉ

Le problème dual du programme

$$Max z = x_1 + 4x_2$$

Sujet à :

- $x_1 x_2 \le 2$
- $2x_1 + x_2 \le 5$
- $x_2 \le 3$
- $x_1, x_2 \ge 0$

est Min w = $2y_1 + 5y_2 + 3y_3$

Sujet à :

- $y_1 + 2y_2 \ge 1$
- $-y_1 + y_2 + y_3 \ge 4$
- $y_1, y_2, y_3 \ge 0$

DUALITÉ

				j				
		į		Coefficient of: Right			Right	
			x_1	<i>x</i> ₂		X_n	Side	
m:	nt ôf:	y ₁ y ₂	a_{11} a_{21}	$\begin{array}{c} a_{12} \\ a_{22} \end{array}$		$a_{in} = a_{2n}$	$\leq b_1$: $\leq b_2$.	nts for tive ion nize)
Dual Problem	Coefficient of:	: -						Coefficients Objective Function (Minimize
ual	<u></u>	y_m	$a_{m,i}$	$a_{\rm in2}$		a_{mn}	$\leq b_m$	၂
a D		Right Side	VI - C ₁	ϵ_{z}		∀l + c n		
Coefficients for Objective Function (Maximize)							:	

THEOREME DUALITE

Soient (P) et (D) deux problèmes duaux

(P) de la forme

Max CX

sc AX = b

 $X \ge 0$

(D) de la forme

min Yb

 $sc YA \ge C$

Y de signe quelconque

Si dans le primal, les contraintes sont de type variables du dual seront de signe quelconque

$$\sum a_{ij} x_j = b_i$$
 alors les y_i

Preuve
$$\sum a_{ij} x_j = b_i \Leftrightarrow \begin{cases} \sum a_{ij} x_j \leq b_i \rightarrow u_i \\ \sum -a_{ij} x_j \leq -b_i \rightarrow v_i \end{cases}$$

Dans le dual correspondant, la fonction objectif est $b_i u_i - b_i v_i = b_i (u_i - v_i) = b_i y_i$ $y_i = u_i - v_i varie dans R entier$

THEOREME des écarts complémentaires

- $Yb \ge cX$ (donc min $Yb \ge max cX$)
- Yb = cX si et seulement si

$$\left\{ \begin{aligned} \sum_{i=1}^{m} y_{i} s_{i} &= 0 \\ \sum_{j=1}^{n} t_{j} x_{j} &= 0 \end{aligned} \right\} \Leftrightarrow \left\{ \begin{aligned} \forall i = 1..m, \ y_{i} &= 0 \ ou \ s_{i} &= 0 \\ et \ \forall j = 1..n, \ t_{j} &= 0 \ ou \ x_{j} &= 0 \end{aligned} \right\}$$

- Si des contraintes dans le primal ne sont pas saturées alors les variables équivalentes dans le dual sont nulles
- Si des variables du primal sont non nulles alors les contraintes équivalentes dans le dual sont saturées

PROGRAMMATION LINÉAIRE EN NOMBRE ENTIER

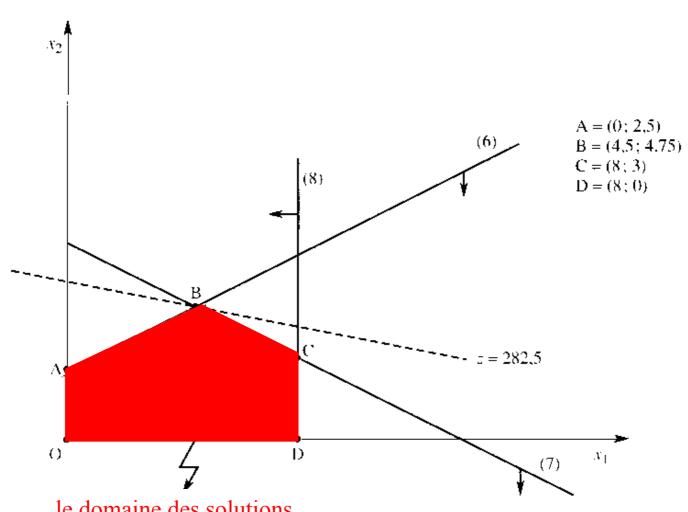
• Max $Z = 10 x_1 + 50 x_2$

- Sujet à
 - $-x_1 + 2 x_2 \le 5$
 - $x_1 + 2 x_2 \le 14$
 - x₁ ≤ 8
- et
 - $x_1 \ge 0, x_2 \ge 0$
 - x₁, x₂ entiers

PROGRAMMATION LINÉAIRE EN NOMBRE ENTIER (Méthode arborescentes)

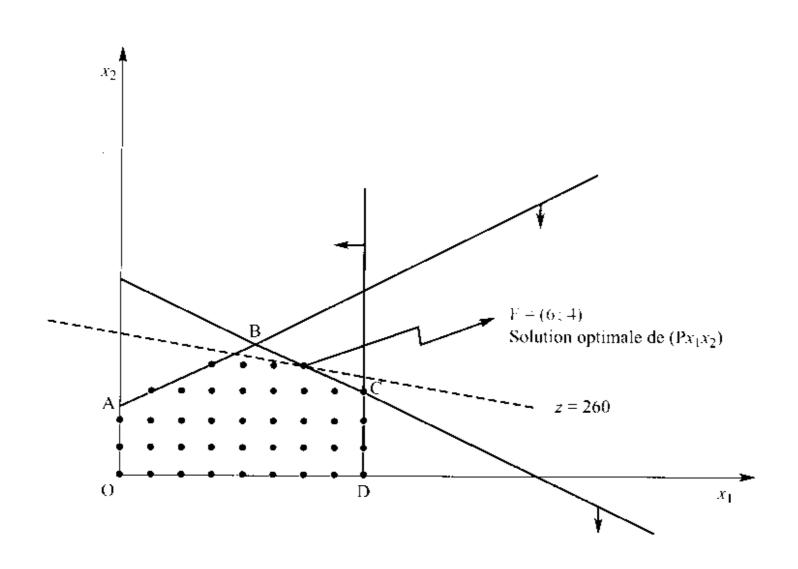
- Appelées aussi méthodes de séparation et évaluation (Branch and Bound)
- Le principe est de choisir une variable x et de <u>séparer</u> le problème en 2 sous problèmes selon les valeurs de cette variable *x*
- Pour le PLNE général, on sépare en considérant un entier P et les 2 sous problèmes $x \le p$ et $x \ge p + 1$
- Pour un PL en 0-1, on sépare en considérant les 2 cas x = 0 et x = 1
- Les PLNE des sous problèmes peuvent à leur tour être séparés, ce qui forme progressivement une arborescence dont chaque nœud correspond à un sous problème
- La majorité des sous problèmes sont en effet éliminés grâce à une <u>évaluation</u>
- Dès que la recherche arborescente a trouvé une prmière solution entiere, ayant un certain coût z, on peut ignorer un nœud P si eval(P) \geq z (cas minimisation)
- Pour le PLNE général, nous utiliserons la méthode de **Dakin** qui utilise le PL relaxé pour évaluer les solutions
- Pour le PL 0-1, nous utiliserons la méthode de **Balas**, plus sophistiquée

PROGRAMMATION LINÉAIRE EN NOMBRE ENTIER



le domaine des solutions réalisables

PROGRAMMATION LINÉAIRE EN NOMBRE ENTIER



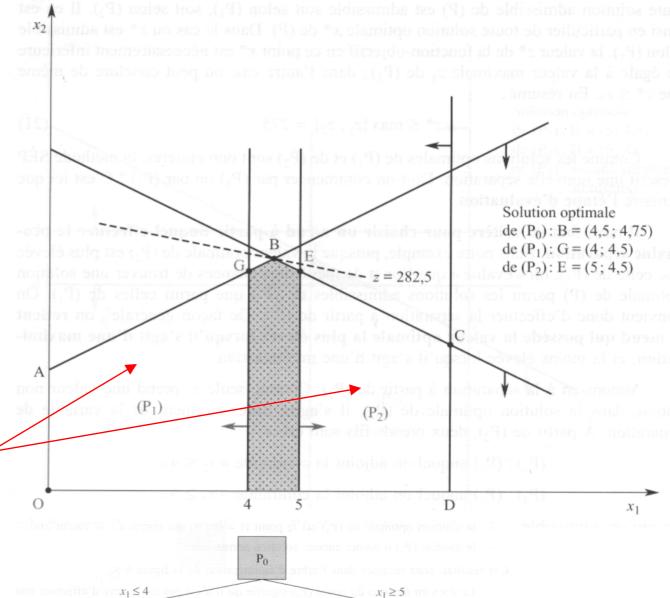
METHODE DE DAKIN POUR PLNE

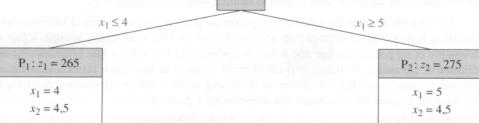
- Méthode de séparation et d'évaluation progressive (Branch-and-Bound Technique)
 - Choix de la variable de séparation
 - Critère de la variable la plus distante
 - Critère du meilleur c_i

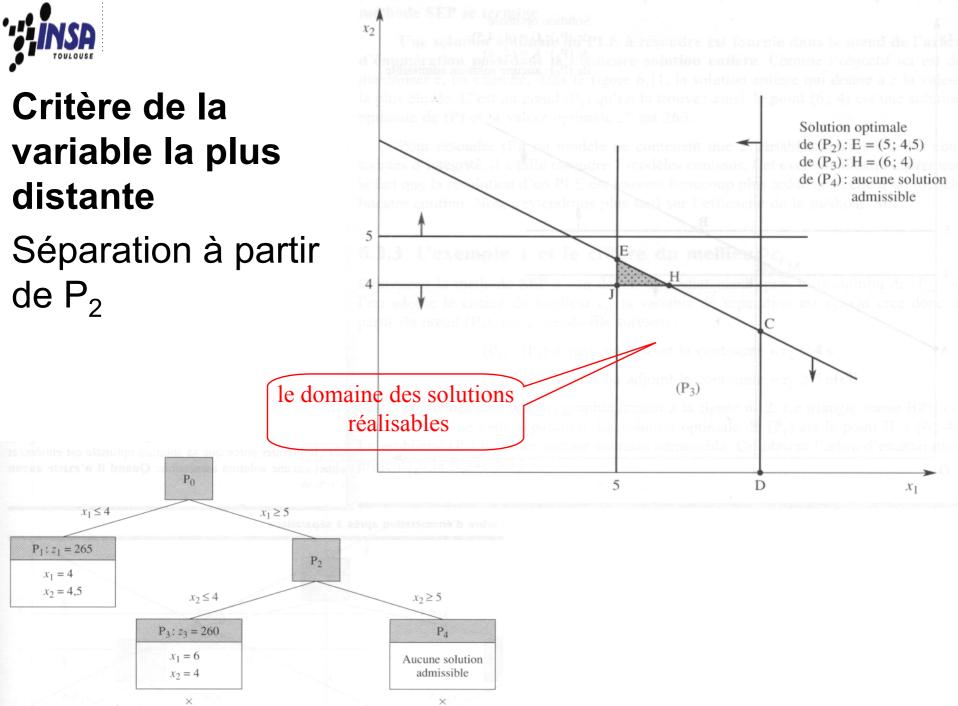
Critère de la variable la plus distante

Séparation selon x₁

le domaine des solutions réalisables

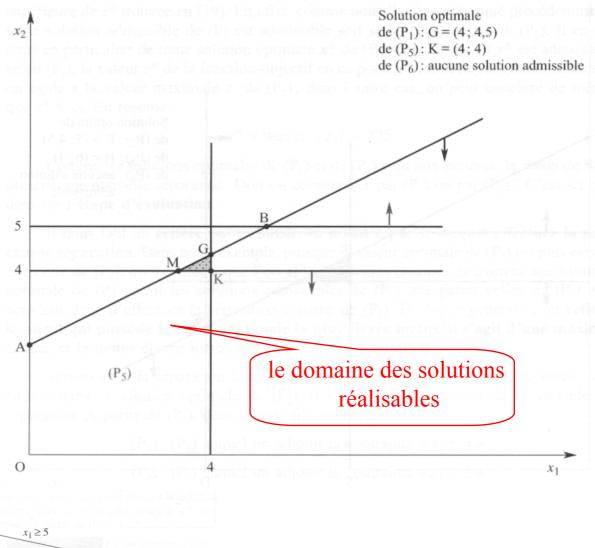


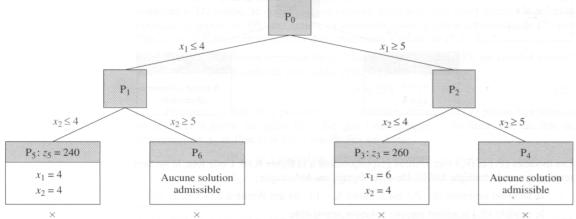




Critère de la variable la plus distante

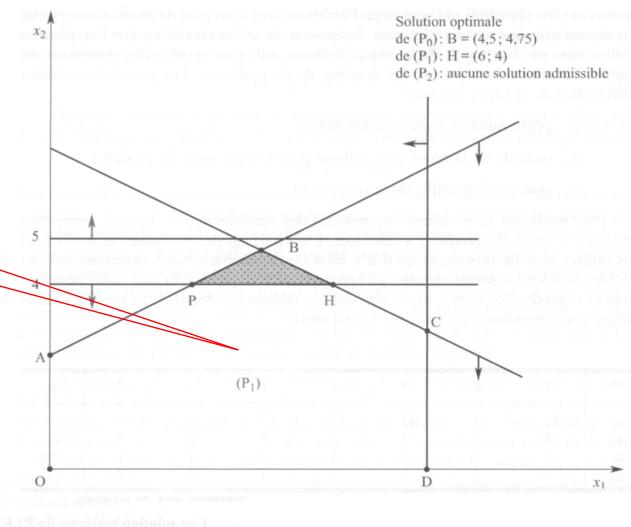
Séparation à partir de P₁





Critère du meilleur c_j

le domaine des solutions réalisables



 $P_1: z_1 = 260$

 $x_1 = 6$ $x_2 = 4$

P₂
Aucune so

Aucune solution admissible

 \times

METHODE DE BALAS POUR PL EN 0 ou 1

Soit le PL suivant

$$Min z = CX$$

$$Ax \ge b$$

$$X \in \{0, 1\}$$

- La méthode de Balas est une méthode arborescente fixant progressivement à 0 ou à 1 les variables x_i
- Comme toutes les méthodes générale, cette méthode ne peut traiter que de problèmes pas trop grand (n = 200), comparer à la méthode du simplexe en PL continu qui peut traiter des dizaines de milliers de variables.

Algorithme

- Conversion du problème initial sous la forme standard d'un problème à minimiser $CX = z_{min}$ k ou $c \ge 0$ sous les contrainte $Ax \ge b$
- Utilisation du test d'admissibilité classique : si max(AX)-b n'est pas supérieur ou égal à 0 alors le problème n'a pas de solution
- Test d'implication : test donnant une affectation d'une variable libre à 0 ou 1 dans le cas où l'autre affectation conduirait à un sous problème non admissible

$$\min -5x_1 + 7x_2 + 10x_3 - 3x_4 + x_5 = z$$

$$-x_1 - 3x_2 + 5x_3 - x_4 - 4x_5 \ge 0 \qquad C_1$$

$$2x_1 + 6x_2 - 3x_3 + 2x_4 + 2x_5 \ge 4 \qquad C_2$$

$$-x_2 + 2x_3 + x_4 - x_5 \ge 2 \qquad C_3$$

$$x_i \in \{0, 1\}$$

Conversion du problème initial

On veut avoir Z = CX avec $C \ge 0$. On remplace les x_i de coefficient négatif dans la fonction objectif $(1-x_i)$. On pose $\mathbf{x_1} = (1-x_1)$ et $\mathbf{x_4} = (1-x_4)$.

Le problème devient :

Min
$$5\mathbf{x}_1 + 7x_2 + 10x_3 + 3\mathbf{x}_4 + x_5 = \mathbf{z} + 8$$

 $\mathbf{x}_1 - 3x_2 + 5x_3 + \mathbf{x}_4 - 4x_5 \ge 2$ C_1
 $-2\mathbf{x}_1 + 6x_2 - 3x_3 - 2\mathbf{x}_4 + 2x_5 \ge 0$ C_2
 $-x_2 + 2x_3 - \mathbf{x}_4 - x_5 \ge 1$ C_3

Test d'admissibilité classique

Chacune des 3 contraintes est de la forme $C_i(X) \ge b_i$. Pour trouver le maximum des $C_i(X) - b_i$, dans chaque contrainte, on donne au variable la valeur 0 si leur coefficient dans la contrainte est négatif, et la valeur de 1 dans le cas contraire. Ici le maximum est :

$$7 - 2 = 5 \text{ pour } C_1$$

$$8 - 0 = 8 \text{ pour } C_2$$

$$2 - 1 = 1 \text{ pour } C_3$$

Alors le problème a au moins une solution

Test d'implication

On impose donc $x_3 = 1$ (conséquence de la 3ème contrainte : coefficient $(x_3) = 2 \ge 1$

Le problème devient :

Min
$$5\mathbf{x}_1 + 7x_2 + 3\mathbf{x}_4 + x_5 = \mathbf{z} - 2$$

 $\mathbf{x}_1 - 3x_2 + 5x_3 + \mathbf{x}_4 - 4x_5 \ge -3$ C_1
 $-2\mathbf{x}_1 + 6x_2 - 2\mathbf{x}_4 + 2x_5 \ge 3$ C_2
 $-x_2 - \mathbf{x}_4 - x_5 \ge -1$ C_3

On cherche à nouveau les max de des $C_i(X) - b_i$

$$2 + 3 = 5$$
 pour C_1
 $8 - 3 = 5$ pour C_2
 $0 + 1 = 1$ pour C_3

On impose donc $x_2 = 1$ (conséquence de la 2ème contrainte : coefficient $(x_2) = 6 \ge 5$

Le problème devient :

Min
$$5\mathbf{x}_1 + 3\mathbf{x}_4 + x_5 = \mathbf{z} - 9$$

 $\mathbf{x}_1 + \mathbf{x}_4 - 4x_5 \ge 0$ C_1
 $-2\mathbf{x}_1 - 2\mathbf{x}_4 + 2x_5 \ge -3$ C_2
 $-\mathbf{x}_4 - x_5 \ge 0$ C_3

• On peut alors s'arrêter car le minimum de la fonction objectif en mettant toutes les variables libre à 0 est ici réalisable. En effet si on met $\mathbf{x}_1 = 0$, $\mathbf{x}_4 = 0$, $\mathbf{x}_5 = 0$, toutes les contraintes sont vérifiées et on minimise la fonction objectif

$$\mathbf{x}_1 = 0 \text{ alors } x_1 = 1$$

 $\mathbf{x}_4 = 0 \text{ alors } x_4 = 1$
 $x_5 = 0, x_2 = 1, x_3 = 1$

Le Point (1, 1, 1, 1, 0) est solution optimale et z = 9

Exemple où les implications ne suffisent pas

- S'il n'y a pas d'implication ⇔ la solution obtenue en mettant toutes les variable à 0 n'est pas réalisable), alors il y aura au moins une variable libre à 1
- On décide d'arbitrer une des variables libres à 1

<u>Choix de Balas</u>: basé sur les contraintes uniquement. Ce choix conduit à affecter à 1 la variable pour laquelle le second membre est plus proche possible de la situation « solution réalisable » (c'est-à-dire somme des coefficients dans b aussi petite que possible)

<u>Choix de Faure</u>: (autre choix possible basé sur la fonction objectif. Ce choix conduit à affecter à 1 la variable de coefficient le plus intéressant dans la fonction objectif

$$Min z = 3x_1 + 9x_2 + 2x_3 + 100$$

Sous contraintes
$$\max - b \quad \sup |a_{ij}|$$

$$3x_1 - 2x_2 + x_3 \ge 1$$
 $4 - 1 = 3 \ge 3$

$$4x_1 + 3x_2 + 4x_3 \ge 5$$
 $11 - 5 = 6 \ge 4$

$$20x_1 - 7x_2 + 30x_3 \ge 10$$
 $50 - 10 = 40 \ge 30$

$$x_i \in \{0, 1\}$$

 $(max - b) \ge 0$ donc l'ensemble des solutions n'est pas vide

 $(\max - b) \ge \sup |a_{ij}|$ donc on n'a pas d'implication

⇒ Il faut donc effectuer une séparation (Balas ou Faure)

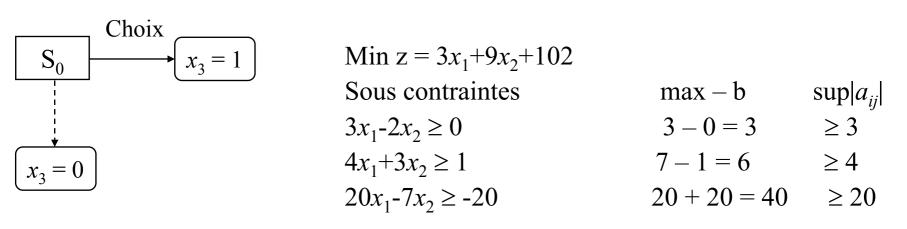
Balas : on fait temporairement x_1, x_2 ou $x_3 = 1$ (le choix de Faure aurait été $x_3 = 1$)

	si $x_1 = 1$	si $x_2 = 1$	$si x_3 = 1$
	$x_2 = x_3 = 0$	$x_1 = x_3 = 0$	$ si x_3 = 1 x_1 = x_2 = 0 $
2ème membre	-2	3	0
des	1	2	1
contraintes	-10	17	-20
\sum (Coeff. ≥ 0)	1	22	1

On regarde alors le minimum des sommes des coefficients positifs.

Ce minimum, égal à 1, est obtenu dans le cas où $x_1 = 1$ ou $x_3 = 1$. On a donc le choix entre $x_1 = 1$ ou $x_3 = 1$.

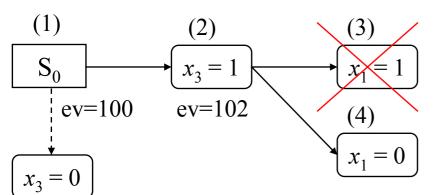
On choisit temporairement $x_3 = 1$, car le coefficient de x_3 est plus petit que celui de x_1 dans la fonction objectif (on cherche un minimum)



⇒ On a toujours pas d'implication, on procède par séparation

	si $x_1 = 1$	$si x_2 = 1$
2ème membre	-3	2
des	-3	-2
contraintes	-40	-13
\sum (Coeff. ≥ 0)	0	2

Le minimum des sommes des coefficients positifs est 0. On choisit donc $x_1 = 1$



ensemble stérilisable

$$ev=105$$

Solution exacte s = (1,0,1)

Meilleure solution temporaire ⇔ remise à jour

En remettant à 0 la seule variable libre x_2 , on obtient une solution réalisable. On fait alors Une remise à jour : solution s \leftarrow (1, 0, 1) et la valeur de la fonction objectif $v \leftarrow$ 105

NB: un choix définitif est valide tant que le choix temporaire qui précède est actif

On revient au choix de x_1 : si on fait $x_1 = 0$, les contraintes deviennent :

$$2x_2 \ge 0$$

$$3x_2 \ge 3$$

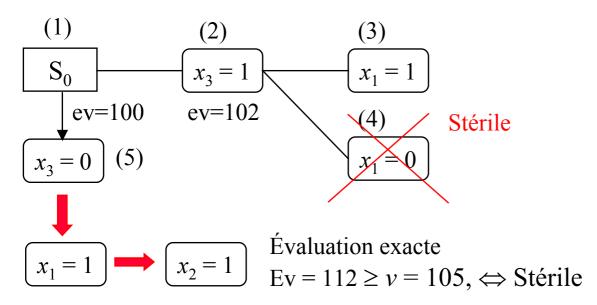
$$-7x_2 \ge -20$$

La contrainte 1 impose alors x_2 =0 mais on a une contradiction avec la contrainte 2. Cette solution n'est pas réalisable. Le choix x_1 =0 est stérile.

On remet maintenant en cause le choix temporaire $x_3 = 1$. On inverse ce choix en chois définitif $x_3 = 0$. Et le problème devient

Min
$$z = 3x_1 + 9x_2 + 100$$

Sous contraintes $\max - b$ $\sup |a_{ij}|$
 $3x_1 - 2x_2 \ge 1$ $3 - 1 = 2$ $3 \ge 2$
 $4x_1 + 3x_2 \ge 5$ $7 - 5 = 2$ $4 \ge 4$
 $20x_1 - 7x_2 \ge 10$ $20 - 10 = 10$ $20 \ge 20$



Pour la première contrainte, on a $\sup |a_{ij}| \ge \max - b$, on impose donc x-1 = 1 x_1 = 1, le problème devient :

Min
$$z = 9x_2 + 103$$

$$-2x_2 \ge -2$$

$$3x_2 \ge 1$$

$$-7x_2 \ge -10$$

Pour satisfaire aux contraintes, il faut imposer $x_2 = 1$. La valeur de la fonction objectif est alors 112. Cette valeur est supérieure à v = 105, donc l'ensemble est stérile. Il n'y pas plus de choix temporaire à remettre en cause. La solution temporaire s = (1, 0, 1) est donc optimale.

Quelques modèles de programmation linéaire

- Problème d'allocation de ressources
- Problème du sac à dos
- Problème de recouvrement
- Problème de partitionnement
- Problème de transport
- Problème d'affectation
- Problème de voyageur de commerce
- Problème de coloration de graphe

- Origine des algorithmes évolutionnaires
 - Obtenus par analogie avec :
 - le processus de l'évolution et de la sélection naturelle (basé sur le néodarwinisme - Charles Darwin - 19ième siècle)
 - Sous 1 'influence des conditions extérieures, les caractéristiques des êtres vivants se modifient progressivement lors de la phase de reproduction
 - Générations d'individus mieux adaptés aux conditions complexes de leur environnement, maximisant donc leur probabilité de survie
 - Émergence des espèces qui ont survécu en transmettant leur patrimoine génétique aux générations futures.

- Origine des algorithmes évolutionnaires (suite)
 - Principe
 - Population initiale d'individus
 - Génération successive de nouvelles populations
 - Succession d'itérations dénommées générations
 - À chaque génération, application de plusieurs opérateurs :
 - croisement (mélange du matériel génétique)
 - mutation (perturbation du matériel génétique)
 - sélection (basé sur l'évaluation des individus fonction d'évaluation)

(les individus en utilisés par un opérateur sont appelées **les parents**; ceux obtenus en sortie **les descendants /enfants**)

Glossaire

- Individu
 - une instance du problème à traité
- Population
 - ensemble d'individus évoluant simultanément
- Génération
 - itération de la boucle de base de l'algorithme évolutionnaire
- Fonction d 'évaluation / adaptation (fitness function)
 - fonction permettant d'évaluer l'adaptation d'un individu

Glossaire (suite)

- Génotype (ou chromosome)
 - représentation sous forme de code / suite de gènes (à l'aide d'un alphabet) d'un individu
- Phénotype
 - représentation réelle d'un individu (instance du problème d'opt.)
- Illustration des notions de génotype / phénotype
 - Le phénotype est obtenu par « décodage » du génotype

Phénotype

Génotype (binaire classique)

$$(x_1, x_2, x_3) \in \{0, \dots, 100\} \times \{0, \dots, 200\} \times \{0, \dots, 13\}; (93, 171, 9)$$

Glossaire (suite)

- Gène
 - un élément d'un génotype, i.e. un des symboles
- Allèle
 - variante d'un gène, i.e. la valeur d'un symbole
- Croisement / recombinaison (*crossover*)
 - combinaison de deux individus pour engendrer un ou deux nouveaux individus
- Mutation
 - modification aléatoire d'un individu
- Sélection
 - choix des individus formant la nouvelle population

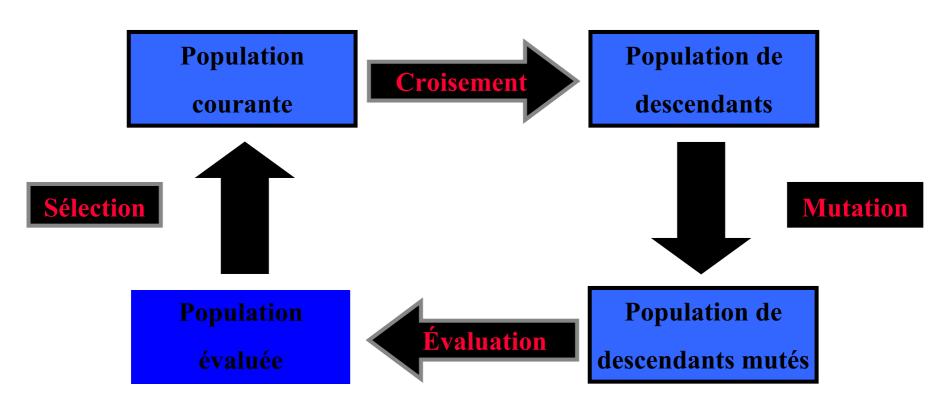
 Analogie problème d'optimisation / algo. évolutionnaire

Problème	Théorie	
d'optimisation	de l'évolution	
fonction de coût / objectif C(x)	fonction de fitness définie à partir de C(X)	
variables du problème	"caractéristiques" d'un individu	
trouver une "bonne" config.	trouver l'individu le mieux adapté	

algorithme évolutionnaires

- Algorithmes retenus (rappel)
 - opérant au niveau génotypique
 - Algorithmes génétiques
 - opérant au niveau phénotypique
 - Stratégies d'évolution
 - Évolution différentielle

Schéma



- Choix du codage des paramètres de la fonction à optimiser.
- Génération de la population initiale d'individus.
- Évaluation : associer à chaque individu son coût
- Refaire
- > Sélection : déterminer les paires d'individus qui participeront à la reproduction.
- ➤ **Reproduction**: appliquer les opérateurs génétiques, pour des paires d'individus sélectionnés (croisement) et pour quelques individus isolés (mutation).
- > Évaluation : associer à chaque individu produit son coût.
- ➤ **Actualisation**: produire une nouvelle population en favorisant les meilleurs individus.
- Jusqu'aux conditions d'arrêt.

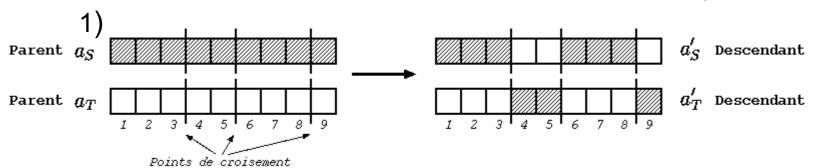
- Algorithmes génétiques (Holland / De Jong 1975)
 - Travail au niveau génotypique (en principe)
 - Codage binaire a = 01011010
 - Binaire classique
 - Inconvénient : petite modif. sur le génotype 🖃 grande différence phénotypique
 - Code de gray
 - Gomme partiellement l'inconvénient du code binaire classique (utilisables pour résoudre un problème discret 🖃 discrétisation)
 - Codage spécifique au problème considéré
 - Voyageur de commerce (5 villes)
 - On désigne les villes par des lettres de l'alphabet;
 - ou par des entiers consécutifs;
 - · etc.

$$a_1 = A B C D E$$

$$a_2 = CBAED$$

$$a'_1 = 12345$$

- Algorithmes génétiques (suite)
 - Opérateurs de croisement et de mutation Illustration
 - Représentation binaire
 - Croisement multipoint (probabilité de croisement p_c proche de



• Mutation (probabilité de mutation p_m fixée par l'utilisateur - faible)

