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Outline
• Dynamic Programming in 3-D
• Progressive Alignment
• Profile Progressive Alignment (ClustalW)
• Scoring Multiple Alignments
• Entropy
• Sum of Pairs Alignment
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Generalizing the Notion of Pairwise Alignment

• Up until now we have only tried to align two
sequences to one another. What about more than
two?

• Alignment of 2 sequences is represented as a
    2-row matrix
• In a similar way, we represent alignment of 3

sequences as a 3-row matrix
  A T _ G C G _

A _ C G T _ A
A T C A C _ A

• Score: more conserved columns, better alignment
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Outline - CHANGE
• Dynamic Programming in 3-D
• IN “Multiple Alignment: Greedy Approach” it is

not clear which sequences are being merged.
Before this slide create an extrra slide giving a
geometrix interpretaion explaining that every 3-D
multiple alignment has corresponding pairwise
alignments

• Wrong tree in Step 2 (cont’d)
• Cryptic second sentence in ClustalW: Example”

Next slide is also cryptic



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Alignments = Paths in…
• Align  3 sequences:   ATGC, AATC,ATGC

C--TAA

CGT--A

CGTA--
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Alignment Paths

432110

C--TAA

CGT--A

CGTA--

x coordinate
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Alignment Paths
• Align the following 3 sequences:

  ATGC, AATC,ATGC
432110

433210

C--TAA

CGT--A

CGTA--

•

x coordinate

y coordinate
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Alignment Paths

432110

433210

C--TAA

CGT--A

432100

CGTA--

•  Resulting path in (x,y,z) space:

(0,0,0)→(1,1,0)→(1,2,1) →(2,3,2) →(3,3,3) →(4,4,4)

x coordinate

y coordinate

z coordinate
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Aligning Three Sequences
• Same strategy as

aligning two sequences

• Use a 3-D “Manhattan
Cube”, with each axis
representing a sequence
to align

• For global alignments,
go from source to sink

source

sink
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2-D vs 3-D Alignment Grid

V

W

2-D edit graph

3-D?
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Architecture of 3-D Alignment Grid

In 3-D, 7 edges
in each unit cube

In 2-D, 3 edges
in each unit
square
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A Cell of 3-D Alignment Grid
(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)
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Multiple Alignment: Dynamic
Programming

• si,j,k = max

• σ(x, y, z) is an entry in the 3-D scoring matrix

si-1,j-1,k-1 + σ(vi, wj, uk)
si-1,j-1,k   + σ(vi, wj, _ )
si-1,j,k-1   + σ(vi, _,  uk)
si,j-1,k-1   + σ(_, wj, uk)
si-1,j,k   + σ(vi, _ , _)
si,j-1,k   + σ(_, wj, _)
si,j,k-1   + σ(_, _, uk)

cube diagonal:
no indels

face diagonal:
one indel

edge diagonal:
two indels
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Multiple Alignment: Running Time

• For 3 sequences of length n, the run time is
7n3; O(n3)

• For k sequences, build a k-dimensional
Manhattan, with run time (2k-1)(nk); O(2knk)

• Conclusion: dynamic programming approach
for alignment between two sequences is
easily extended to k sequences but it is
impractical due to exponential running time
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Inferring Multiple Alignment
from Pairwise Alignments

• From an optimal multiple alignment, we can
infer pairwise alignments between all
sequences, but they are not necessarily
optimal

• It is difficult to infer a ``good” multiple
alignment from optimal pairwise alignments
between all sequences
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Combining Optimal Pairwise Alignments into
Multiple Alignment

Can combine pairwise
alignments into
multiple alignment

Can not combine
pairwise alignments
into multiple
alignment
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Inferring Pairwise Alignments

3 sequences, 3 comparisons

4 sequences, 6 comparisons

5 sequences, 10 comparisons
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Multiple Alignment: Greedy
Approach
• Choose most similar pair of strings and combine into a

consensus, thereby reducing alignment of k sequences
to an alignment of of k-1 sequences. Repeat

• This is a heuristic greedy method

u1= ACGTACGTACGT…

u2 = TTAATTAATTAA…

u3 = ACTACTACTACT…

…

uk = CCGGCCGGCCGG

u1= AC-TAC-TAC-T…

u2 = TTAATTAATTAA…

…

uk = CCGGCCGGCCGG…
k

k-1
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Greedy Approach: Example

• Consider these 4 sequences

s1 GATTCA
s2 GTCTGA
s3 GATATT
s4 GTCAGC
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Greedy Approach: Example
(cont’d)
• There are       = 6 possible alignments









2

4

s2  GTCTGA
s4  GTCAGC (score = 2)

s1  GAT-TCA
s2  G-TCTGA (score = 1)

s1  GAT-TCA
s3  GATAT-T (score  = 1)

s1  GATTCA--
s4  G—T-CAGC(score = 0)

s2  G-TCTGA
s3  GATAT-T (score = -1)

s3  GAT-ATT
s4  G-TCAGC (score = -1)
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Greedy Approach: Example
(cont’d)

s2  and s4 are closest; combine:

s2 GTCTGA
s4 GTCAGC s2,4 GTCTGA (consensus)

s1    GATTCA
s3    GATATT
s2,4  GTCTGA

new set becomes:

There are many (4) alternative choices for the consensus, let’s assume
we randomly choose one
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Greedy Approach: Example
(cont’d)

s1 GATTCA
s3 GATATT
s2,4 GTCTGA

set is:
s1 GAT-TCA
s3 GATAT-T (score  = 1)

s1 GATTC--A
s2,4 G-T-CTGA (score  = 0)

s3 GATATT-
s2,4 G-TCTGA (score=-1)

scores are:

Take best pair and form another consensus:

s1,3 = GATATT  (arbitrarily break ties)
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Greedy Approach: Example
(cont’d)

new set is:

s1,3 GATATT
s2,4 GTCTGA

s1,3 GATATT
s2,4 G-TCTGA (score=-1)

Form consensus:

s1,3,2,4 = GATCTG

(arbitrarily break ties)

scores is:
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Progressive Alignment
• Progressive alignment is a variation of greedy algorithm with a

somewhat more intelligent strategy for choosing a consensus

• Progressive alignment works well for close sequences, but
deteriorates for distant sequences

• Gaps in consensus string are permanent

• Simplified representation of the alignments

• Better solution? Use a profile to represent consensus

ATG-CAA
AT-CCA-
ACG-CTG 0031010C

AACCGTA

0

1

2

100200G

000020T

100003A
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ClustalW

• Popular multiple alignment tool today

• Several heuristics to improve accuracy:

• Sequences are weighted by relatedness

• Scoring matrix can be chosen “on the fly”

• Position-specific gap penalties



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

ClustalW (cont’d)

• Often used for protein alignment

• ‘W’ stands for ‘weighted’

• Different parts of alignment are weighted.

• Position/residue specific gap penalties.

• Three-step process

1.) Pairwise alignment

2.) Build Guide Tree

3.) Progressive Alignment
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Step 1: Pairwise Alignment

• Aligns each sequence again each other
giving a distance matrix

• Distance = exact matches / sequence length
(percent identity)

    S1   S2  S3  S4
S1  -
S2  .17  -
S3  .87 .28  -
S4  .59 .33 .62 -

(.17 means 17 % identical)
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Step 2: Guide Tree

• Create Guide Tree using the distance matrix

• ClustalW uses the neighbor-joining method

• Guide tree roughly reflects evolutionary
relations
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Step 2: Guide Tree (cont’d)

    S1   S2  S3  S4
S1  -
S2  .17  -
S3  .87 .28  -
S4  .59 .43 .62 -

S1
S3
S4 
S2

Calculate:
s1,3     = consensus(s1, s3)
s1,3,4   = consensus((s1,3),s4)
s1,2,3,4 = consensus((s1,3,4),s2)
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Step 3: Progressive Alignment
• Align the two most similar sequences

• Following the guide tree, add in the next
sequences, aligning to the existing alignment

• Insert gaps as necessary

Sample output:

FOS_RAT         PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
FOS_MOUSE       PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD
FOS_CHICK       SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD
FOSB_MOUSE      PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ
FOSB_HUMAN      PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ
                .   . :   ** .     :..  *:.*   *   . *                   **:

Dots and stars show how well-conserved a column is.
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ClustalW: Example

• Each sequence has a weight; groups of
related sequences have lower weight

• Sum the score matrix entry for all pairs and
weight each pair by the sequences’ weight
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ClustalW: Example (cont’d)

• Scoring alignments of sequences 1x2 and 3x4

1: peeksavtal
2: geekaavlal

3: egewglvlhv
4: aaektkirsa

Score:
w(1)*w(3)*M(t,v) +
w(1)*w(4)*M(t,i) +
w(2)*w(3)*M(l,v) +
w(2)*w(4)*M(l,i)
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ClustalW: Scoring Alignments

• Distance between sequences determines which
scoring matrix to use

• 80 - 100%  Blosum80

• 60-80%  Blosum60

• 30-60%  Blosum45

• 0-30%  Blosum30
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Multiple Alignments: Scoring

• Number of matches (multiple longest
common subsequence score)

• Entropy score

• Sum of pairs (SP-Score)
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Multiple LCS Score

• A column is a “match” if all the letters in the
column are the same

• Only good for very similar sequences

AAA
AAA
AAT
ATC
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Entropy

• Define frequencies for the occurrence of each
letter in each column of multiple alignment

• pA = 1 or pA = 0.75, pT = 0.25

• Compute entropy of each column

∑
=

−
CGTAX

XX pp
,,,

log
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Entropy: Example
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Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the
sum of entropies of its columns:

Σ over all columns Σ X=A,T,G,C pX logpX
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Entropy of an Alignment:
Example

column entropy:
 -( pAlogpA + pClogpC + pGlogpG + pTlogpT)

•Column 1 = -[1*log(1) + 0*log0 + 0*log0 +0*log0]
  = 0

•Column 2 = -[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0]
  = -[ (1/4)*(-2) + (3/4)*(-.415) ] = +0.811

•Column 3 = -[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4) +(1/4)*log(1/4)]
  = 4* -[(1/4)*(-2)] = +2

•Alignment Entropy = 0 + 0.811 + 2 = +2.811
TCA

GCA

CCA

AAA
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Inferring  Pairwise Alignments
from Multiple Alignments

• From a multiple alignment, we can infer
pairwise alignments between all sequences,
but they are not necessarily optimal

• This is like projecting a 3-D multiple
alignment path on to a 2-D face of the cube
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Multiple Alignment Projections

A 3-D alignment can
be projected onto
the 2-D plane to
represent an
alignment between a
pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment
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Sum of Pairs Score(SP-Score)

• Consider pairwise alignment of sequences

                          ai and aj

     imposed by a multiple alignment of k sequences

• Denote the score of this suboptimal (not
necessarily optimal) pairwise alignment as

                            s*(ai, aj)

• Sum up the pairwise scores for a multiple
alignment:

s(a1,…,ak) = _i,j s*(ai, aj)
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Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a1,a2,a3,a4:

s(a1…a4) =  Σs*(ai,aj) = s*(a1,a2) + s*(a1,a3)
                                    + s*(a1,a4) + s*(a2,a3)
                                    + s*(a2,a4) + s*(a3,a4)
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SP-Score: Example
s1

.
sk

ATG-C-AAT
A-G-CATAT
ATCCCATTT

∑=
ji

jik aaSaaS
,

*
1 ),()...( 
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n
Pairs of Sequences

A

A A

11

1

G

C G

1−µ

−µ

=   3 Score =   1 – 2µ

Column 1 Column 3

   s s*(

To  calculate each column:


