www.bioalgorithms.info

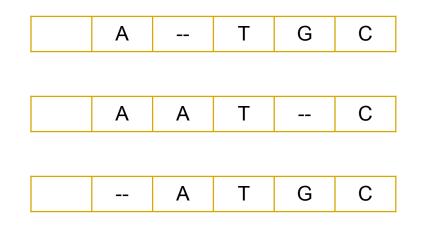
Multiple Alignment

Outline

- Dynamic Programming in 3-D
- Progressive Alignment
- Profile Progressive Alignment (ClustalW)
- Scoring Multiple Alignments
- Entropy
- Sum of Pairs Alignment

Generalizing the Notion of Pairwise Alignment

- Up until now we have only tried to align two sequences to one another. What about more than two?
- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix


• Score: more conserved columns, better alignment

Outline - CHANGE

- Dynamic Programming in 3-D
- IN "Multiple Alignment: Greedy Approach" it is not clear which sequences are being merged. Before this slide create an extrra slide giving a geometrix interpretaion explaining that every 3-D multiple alignment has corresponding pairwise alignments
- Wrong tree in Step 2 (cont'd)
- Cryptic second sentence in ClustalW: Example" Next slide is also cryptic

Alignments = Paths in...

Align 3 sequences: ATGC, AATC, ATGC

Alignment Paths

0	1	1	2	3	4
	А		Т	G	С

x coordinate

Alignment Paths

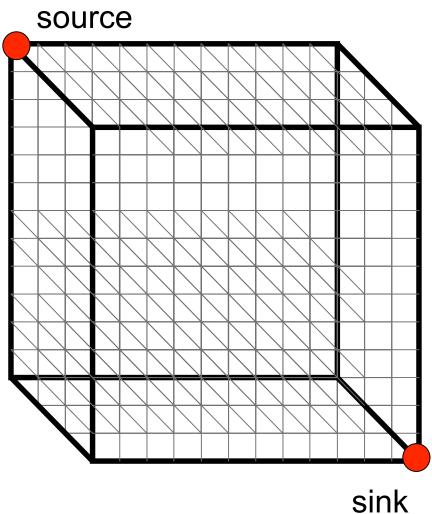
Align the following 3 sequences:

ATGC, AATC,ATGC						
0	1	1	2	3	4	
	А		Т	G	С	
0	1	2	3	3	4	
	А	А	Т		С	

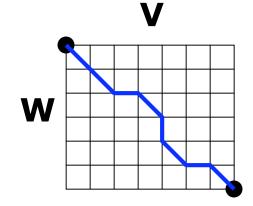
- x coordinate
- y coordinate

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	А	А	Т		С
0	A 0	A 1	T 2	 3	C 4

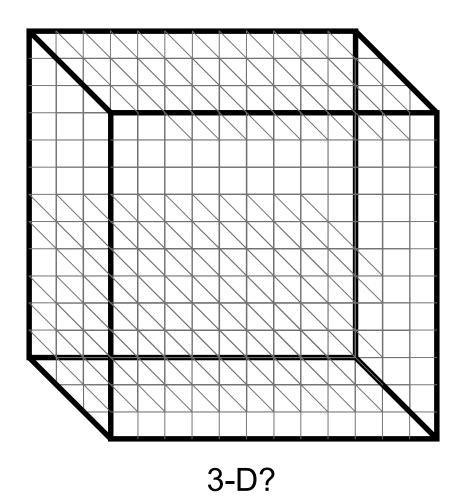
x coordinate

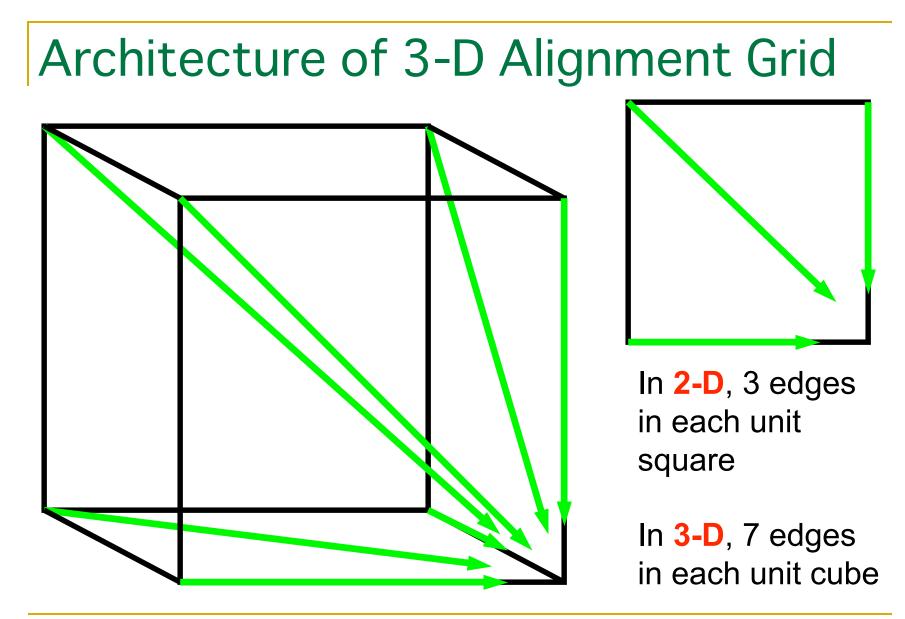

y coordinate

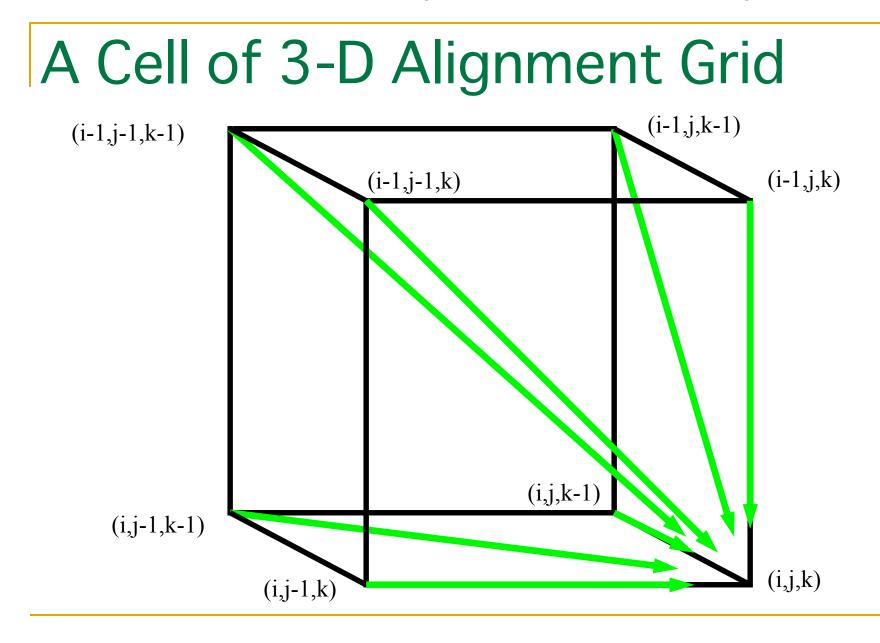
z coordinate


Resulting path in (x,y,z) space:
 (0,0,0)→(1,1,0)→(1,2,1) →(2,3,2) →(3,3,3) →(4,4,4)

Aligning Three Sequences


- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink



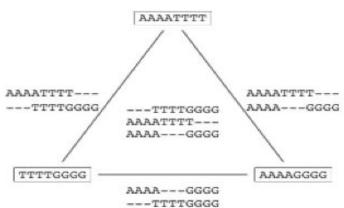

2-D vs 3-D Alignment Grid

2-D edit graph

Multiple Alignment: Dynamic
Programming• $s_{i,j,k} = \max \begin{pmatrix} s_{i-1,j-1,k-1} + \sigma(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \sigma(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \sigma(v_i, \dots, u_k) \\ s_{i,j-1,k-1} + \sigma(-, w_j, u_k) \\ s_{i,j-1,k} + \sigma(-, w_j, u_k) \\ s_{i,j-1,k} + \sigma(-, w_j, \dots) \\ s_{i,j-1,k} + \sigma(-, w_j, \dots) \\ s_{i,j,k-1} + \sigma(-, w_j, \dots) \\ s_{i,j,k-1} + \sigma(-, w_j, \dots) \\ s_{i,j,k-1} + \sigma(-, w_j, u_k) \end{pmatrix}$ cube diagonal:
no indels

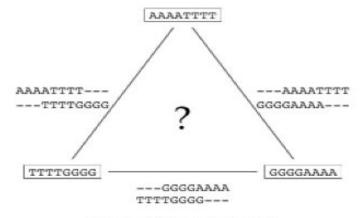
• $\sigma(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

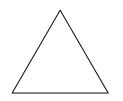

- For 3 sequences of length *n*, the run time is 7*n*³; O(*n*³)
- For k sequences, build a k-dimensional Manhattan, with run time (2^k-1)(n^k); O(2^kn^k)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to *k* sequences but it is impractical due to exponential running time

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal
- It is difficult to infer a ``good" multiple alignment from optimal pairwise alignments between all sequences

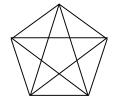

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment


(a) Compatible pairwise alignments

Can *not* combine pairwise alignments into multiple alignment


⁽b) Incompatible pairwise alignments


Inferring Pairwise Alignments

3 sequences, 3 comparisons

4 sequences, 6 comparisons

5 sequences, 10 comparisons

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a consensus, thereby reducing alignment of k sequences to an alignment of of k-1 sequences. Repeat
- This is a heuristic greedy method

$$k \begin{cases} u_1 = ACGTACGTACGT... & u_1 = AC-TAC-TAC-T... \\ u_2 = TTAATTAATTAA... & u_2 = TTAATTAATTAA... \\ u_3 = ACTACTACTACT... & ... \\ ... & u_k = CCGGCCGGCCGG \\ & u_k = CCGGCCGGCCGGG \\ & u_k = CCGGCCGGCCGGG \\ & u_k = CCGGCCGGCCGG \\ & u_k = CCGGCCGGCCGGC \\ & u_k = CCGGCCG$$

Greedy Approach: Example

- Consider these 4 sequences
 - s1 GATTCA
 - s2 GTCTGA
 - s3 GATATT
 - s4 GTCAGC

Greedy Approach: Example (cont' d) • There are $\binom{4}{2}$ = 6 possible alignments

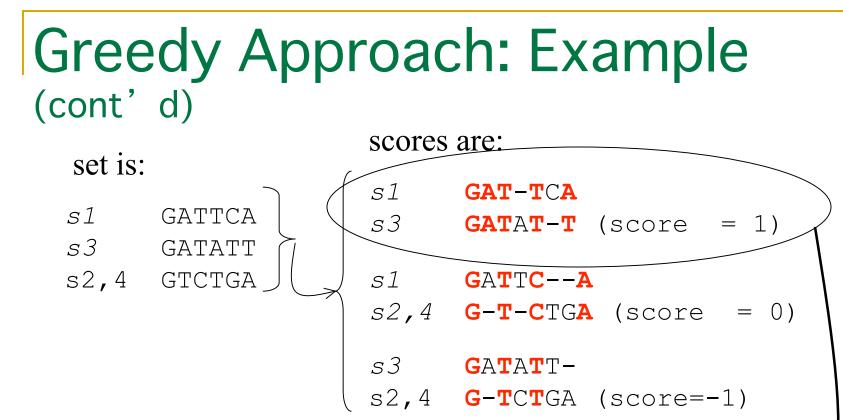
- *s2* **GTCTG**A *s4* **GTCAG**C (score = 2)
- *s1* GAT-TCA *s2* G-TCTGA (score = 1)
- *s1* **GAT-TCA** *s3* **GATAT-T** (score = 1)

- s1 GATTCA--
- s4 **G**-**T-CA**GC(score = 0)

s2 G-TCTGA

s3 **GATAT-**T (score = -1)

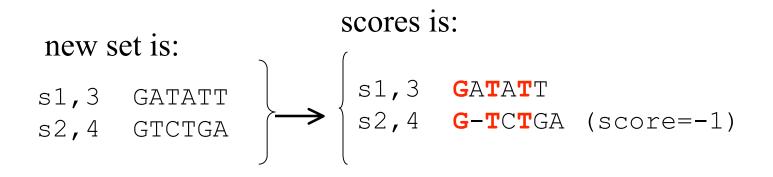
s3 **GAT-A**TT *s4* **G-TCA**GC (score = -1) Greedy Approach: Example (cont'd)


s2 and s4 are closest; combine:

s2 GTCTGA s2,4 GTCTGA (consensus) *s4* GTCAGC

There are many (4) alternative choices for the consensus, let's assume we randomly choose one

new set becomes:


s1 GATTCA *s3* GATATT s2,4 GTCTGA

Take best pair and form another consensus:

s1, 3 = GATATT (arbitrarily break ties)

Form consensus:

s1, 3, 2, 4 = GATCTG

(arbitrarily break ties)

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing a consensus
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Simplified representation of the alignments
- Better solution? Use a profile to represent consensus

	3	0	0	0	0	2	1
ATG-CAA T	0	2	0	0	0	1	0
AT-CCA- G	0	0	2	0	0	0	1
ACG-CTG c	0	1	0	1	3	0	0
	A	Т	G	С	С	A	A

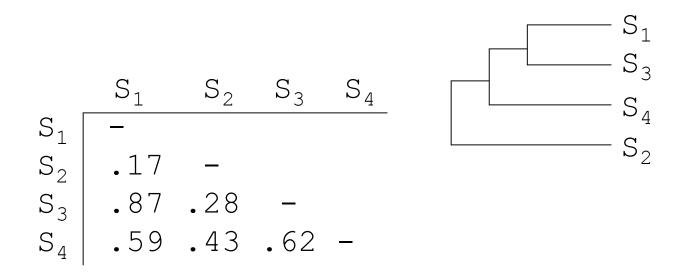
ClustalW

- Popular multiple alignment tool today
- Several heuristics to improve accuracy:
 - Sequences are weighted by relatedness
 - Scoring matrix can be chosen "on the fly"
 - Position-specific gap penalties

ClustalW (cont'd)

- Often used for protein alignment
- 'W' stands for 'weighted'
 - Different parts of alignment are weighted.
 - Position/residue specific gap penalties.
- Three-step process
 - 1.) Pairwise alignment
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment

Step 1: Pairwise Alignment


- Aligns each sequence again each other giving a distance matrix
- Distance = exact matches / sequence length (percent identity)

(.17 means 17 % identical)

Step 2: Guide Tree

- Create Guide Tree using the distance matrix
 - ClustalW uses the neighbor-joining method
 - Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont' d)

Calculate: s1,3 = consensus(s1, s3)s1,3,4 = consensus((s1,3),s4)s1,2,3,4 = consensus((s1,3,4),s2)

Step 3: Progressive Alignment

- Align the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

Dots and stars show how well-conserved a column is.

ClustalW: Example

- Each sequence has a weight; groups of related sequences have lower weight
- Sum the score matrix entry for all pairs and weight each pair by the sequences' weight

ClustalW: Example (cont' d)

Scoring alignments of sequences 1x2 and 3x4

- 1: peeksav**t**al 2: geekaav**l**al
- 3: egewglvlhv
- 4: aaektkirsa

Score: w(1)*w(3)*M(t,v) + w(1)*w(4)*M(t,i) + w(2)*w(3)*M(l,v) + w(2)*w(4)*M(l,i)

ClustalW: Scoring Alignments

- Distance between sequences determines which scoring matrix to use
 - 80 100% → Blosum80
 - 60-80% \rightarrow Blosum60
 - $30-60\% \rightarrow \text{Blosum45}$
 - 0-30% \rightarrow Blosum30

Multiple Alignments: Scoring

- Number of matches (multiple longest common subsequence score)
- Entropy score
- Sum of pairs (SP-Score)

• A column is a "match" if all the letters in the column are the same

AAA AAA AAT ATC

• Only good for very similar sequences

Entropy

 Define frequencies for the occurrence of each letter in each column of multiple alignment

•
$$p_A = 1 \text{ or } p_A = 0.75, p_T = 0.25$$

Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X$$

Entropy: Example

$$entropy \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0$$
 Best case
Worst case $entropy \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4}*-2) = 2$

Multiple Alignment: Entropy Score

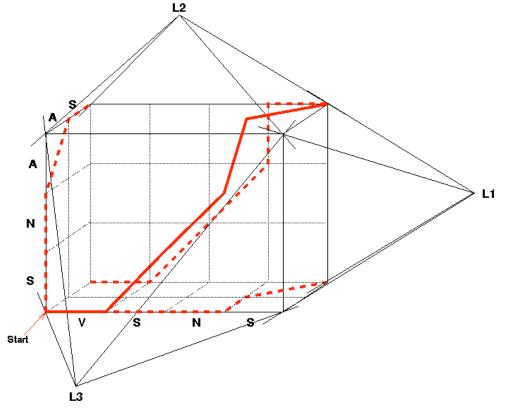
Entropy for a multiple alignment is the sum of entropies of its columns:

$$\Sigma_{\text{over all columns}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

Entropy of an Alignment: Example

 $-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)$

Α	A	A
Α	С	С
Α	С	G
Α	С	Т


- •Column 2 = -[$(1/_4)$ *log $(1/_4)$ + $(3/_4)$ *log $(3/_4)$ + 0*log0 + 0*log0] = -[$(1/_4)$ *(-2) + $(3/_4)$ *(-.415)] = +0.811
- •Column 3 = -[(1/₄)*log(1/₄)+(1/₄)*log(1/₄)+(1/₄)*log(1/₄)+(1/₄)*log(1/₄)] = 4* -[(1/₄)*(-2)] = +2

•Alignment Entropy = 0 + 0.811 + 2 = +2.811

Inferring Pairwise Alignments from Multiple Alignments

- From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal
- This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

 a_i and a_j
 imposed by a multiple alignment of k sequences
- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

• Sum up the pairwise scores for a multiple alignment:

$$s(a_1, ..., a_k) = __{i,j} s^*(a_i, a_j)$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given
$$a_1, a_2, a_3, a_4$$
:
 $s(a_1 \dots a_4) = \Sigma s^*(a_1, a_2) + s^*(a_1, a_3) + s^*(a_1, a_4) + s^*(a_2, a_3) + s^*(a_2, a_4) + s^*(a_3, a_4)$

SP-Score: Example

 s_1 ATG-C-AAT · A-G-CATAT s_k ATCCCATTT

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*(a_i, a_j) \leftarrow \binom{n}{2}$$
 Pairs of Sequences
$$\underbrace{\bigwedge_{i=1}^{A} 1}_{\substack{i=1 \\ \text{Column 1}}} = 3 \qquad -\underbrace{\bigoplus_{i=1}^{\mu} 1}_{\substack{i=1 \\ \text{Column 3}}} \text{ Score} = 1 - 2\mu$$